多目標跟蹤是指在連續(xù)的圖像中,通過目標檢測算法識別出每一幀中的目標,并在時間上跟蹤它們的位置和狀態(tài)。但目標會不斷發(fā)生尺度、形變、遮擋等變化,而且還會有目標出現和消失的情況,再加上視頻采集端的相機所處環(huán)境可能受到外界影響導致抖動的情況(例如無人機高空檢測),就會給多目標跟蹤造成一定的困難。由于我們不能控制目標,所以只能從視頻采集端維護跟蹤的穩(wěn)定性。因此,成都慧視針對于多目標檢測跟蹤抖動丟失的優(yōu)化方法是:1.改進目標檢測,使用更加魯棒的目標檢測算法。2.增強特征描述,利用深度學習提取更高級別的語義特征,這些特征對于小范圍內的視角變化具有更好的不變性3.改進運動模型,在算法中加入對攝像頭運動的估計,通過補償攝像頭運動來減小目標真實運動與預測之間的差距。4.數據關聯策略,設計更靈活的數據關聯算法,允許更大的距離閾值來匹配候選目標。誰能打造一整套目標檢測方案?廣東靜態(tài)目標檢測
2024年上半年我國就發(fā)生了多起重大火災事故,例如江西新余臨街店鋪起火,河南開封學校禮堂火災等。作為爆發(fā)迅速的一種災害,火災,需要防患于未然。事前預警、事發(fā)情況的透明都是阻礙救援的大敵。因此,基于傳統(tǒng)攝像頭的AI火焰識別就有了存在的必要性?;鹧孀R別技術依托于傳統(tǒng)的攝像頭,目前市面上的火焰識別攝像機分為兩種,一是傳感器和算法組合,在攝像頭的基礎上加裝高性能的AI圖像處理板,再定制化火焰識別的算法,就能夠對攝像頭所示范圍進行智能化監(jiān)控,一旦出現火苗,攝像頭就能夠立即識別并發(fā)出警報。另一個是純算法,致力于在黑暗、煙霧等環(huán)境下,準確捕捉到微小的火焰變化,并通過算法進行識別,從而實現提前預警。廣東靜態(tài)目標檢測小目標檢測可以選成都慧視開發(fā)的圖像處理板。
“啟明935A”系列芯片已經成功點亮,并完成各項功能性測試,達到車規(guī)級量產標準。啟明935A是行業(yè)首顆基于Chiplet(芯粒/小芯片)異構集成范式的自動駕駛芯片,但并非單一芯片,而是一個家族系列。啟明935HUBChiplet可以和不同數量的大熊星座AIChiplet互相搭配,再結合靈活的封裝方式,快速形成不同性能等級的SoC芯片。它還支持高帶寬的PBLink多芯互連,雙芯雙向帶寬128GB/s,四芯雙向帶寬64GB/s。啟明935A每顆芯片都支持比較大20路的1080p60攝像頭輸入,可應用于各類端側AI部署。得益于大熊星座NPU天然支持Transformer結構,初步支持的模型有Yolo系列、ResNet50、PSPNet、PointNet++、TrafficSign_Retinanet、BevDet、miniCPM、Unet_ResNet50、PointPillars、PillarNest、M2track、BevFusion、PaliGemma、LLaMa-3B、8B等等。
無人機的智能化是推動低空經濟發(fā)展的重要引擎,打造智能無人機需要通信、控制、傳感器等多種技術的共同作用,其中圖像處理板的目標檢測識別技術能夠在智慧巡檢、智慧交通管理、智慧河湖巡查等領域有著積極作用。在成都慧視開發(fā)的多款圖像處理板中,Viztra-LE026以小型化、低功耗的特點深受行業(yè)青睞。Viztra-LE026圖像處理板采用了全國產化芯片RV1126,板卡外形呈圓形設計,尺寸為Φ38mm*12mm,重量12g,雖然小巧,但是算力可達2.0TOPS,能夠憑借1路MIPI視頻輸入和1路DVP視頻輸入實現對目標實時自主檢測、識別,并自動或手動鎖定跟蹤人、車、船等目標。用于目標檢測的傳感器有哪些?
無人機在軍備領域有著突出作用,它不僅能幫助進行信息偵查,還能進行智能炮彈高空精細打擊。其中,在智能精細打擊領域,少不了人工智能的參與。通過人工智能的控制分析,能夠實現對打擊目標的AI識別。選擇這樣的方式,能夠減少末端打擊時對方電子干擾的影響,盡可能保證無人機的重復使用,圖像處理設備顯然比無人機本身更加經濟。除了硬件方面,要實現這樣的精細打擊,算法的能力至關重要。在實際應用落地之前就需要大量的模擬試驗來驗證算法的識別能力,這個過程周期不可估量。傳統(tǒng)方式下,需要大量的外場測試驗證,整個流程繁瑣費時費力。而這個工具的出現,則很好的優(yōu)化了這個過程?;垡晥D像處理板是低空經濟的得力幫手。河北目標檢測產品
目標檢測可以用成都慧視開發(fā)的RV1126圖像處理板。廣東靜態(tài)目標檢測
長時間一直進行這樣的圖像標注工作,那無疑是枯燥而乏味的,手酸不說,更多的是精神上的折磨,進而效率大打折扣。但這又是算法提升的必要途徑,無法跳過,當項目緊急時,甚至需要多人加班加點趕進度。這樣的痛苦現狀急需改變!慧視光電的算法工程師為了提高這一的效率,開發(fā)了一個深度學習算法開發(fā)平臺SpeedDP。它的基本邏輯是基于一個手動標注一定量的數據集進行訓練,形成一個可用的預選模型(如果已有模型可以直接使用),然后訓練一定階段后,可以評估此模型的能力,如果能夠滿足使用就可以對相同目標的新數據集(未進行任何標注)進行AI自動化標注。這一過程的省去了大量需要對新數據集的手動拉框工作,同時也在不斷反哺此模型算法,幫助提升性能。廣東靜態(tài)目標檢測